graphenej/graphenej/src/main/java/cy/agorise/graphenej/Util.java

425 lines
16 KiB
Java

package cy.agorise.graphenej;
import com.google.common.primitives.Bytes;
import com.google.common.primitives.UnsignedLong;
import org.spongycastle.crypto.DataLengthException;
import org.spongycastle.crypto.InvalidCipherTextException;
import org.spongycastle.crypto.digests.GeneralDigest;
import org.spongycastle.crypto.digests.RIPEMD160Digest;
import org.spongycastle.crypto.digests.SHA1Digest;
import org.spongycastle.crypto.digests.SHA256Digest;
import org.spongycastle.crypto.engines.AESFastEngine;
import org.spongycastle.crypto.modes.CBCBlockCipher;
import org.spongycastle.crypto.paddings.PaddedBufferedBlockCipher;
import org.spongycastle.crypto.params.KeyParameter;
import org.spongycastle.crypto.params.ParametersWithIV;
import org.tukaani.xz.CorruptedInputException;
import org.tukaani.xz.FinishableOutputStream;
import org.tukaani.xz.LZMA2Options;
import org.tukaani.xz.LZMAInputStream;
import org.tukaani.xz.LZMAOutputStream;
import org.tukaani.xz.XZInputStream;
import org.tukaani.xz.XZOutputStream;
import java.io.ByteArrayInputStream;
import java.io.ByteArrayOutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.nio.ByteBuffer;
import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;
import java.util.Arrays;
import java.util.LinkedList;
import java.util.List;
import java.util.logging.Level;
import java.util.logging.Logger;
/**
* Class used to encapsulate common utility methods
*/
public class Util {
public static final String TAG = "Util";
private static final char[] hexArray = "0123456789abcdef".toCharArray();
public static final int LZMA = 0;
public static final int XZ = 1;
/**
* AES encryption key length in bytes
*/
public static final int KEY_LENGTH = 32;
/**
* Time format used across the platform
*/
public static final String TIME_DATE_FORMAT = "yyyy-MM-dd'T'HH:mm:ss";
/**
* Converts an hexadecimal string to its corresponding byte[] value.
* @param s: String with hexadecimal numbers representing a byte array.
* @return: The actual byte array.
*/
public static byte[] hexToBytes(String s) {
int len = s.length();
byte[] data = new byte[len / 2];
for (int i = 0; i < len; i += 2) {
data[i / 2] = (byte) ((Character.digit(s.charAt(i), 16) << 4)
+ Character.digit(s.charAt(i+1), 16));
}
return data;
}
/**
* Converts a byte array, into a user-friendly hexadecimal string.
* @param bytes: A byte array.
* @return: A string with the representation of the byte array.
*/
public static String bytesToHex(byte[] bytes) {
char[] hexChars = new char[bytes.length * 2];
for ( int j = 0; j < bytes.length; j++ ) {
int v = bytes[j] & 0xFF;
hexChars[j * 2] = hexArray[v >>> 4];
hexChars[j * 2 + 1] = hexArray[v & 0x0F];
}
return new String(hexChars);
}
/**
* Decodes an ascii string to a byte array.
* @param data: Arbitrary ascii-encoded string.
* @return: Array of bytes.
*/
public static byte[] hexlify(String data){
ByteBuffer buffer = ByteBuffer.allocate(data.length());
for(char letter : data.toCharArray()){
buffer.put((byte) letter);
}
return buffer.array();
}
/**
* Serializes long value to a byte array.
* @param data Long value.
* @return Array of bytes.
*/
public static byte[] serializeLongToBytes(long data) {
List<Byte> bytes = new LinkedList<>();
long value = data;
do {
byte b = (byte)(value & 0x7F);
value >>= 7;
if (value != 0) {
b |= 0x80;
}
bytes.add(b);
} while (value != 0);
return Bytes.toArray(bytes);
}
/**
* Utility function that compresses data using the LZMA algorithm.
* @param inputBytes Input bytes of the data to be compressed.
* @param which Which subclass of the FinishableOutputStream to use.
* @return Compressed data
* @author Henry Varona
*/
public static byte[] compress(byte[] inputBytes, int which) {
FinishableOutputStream out = null;
try {
ByteArrayInputStream input = new ByteArrayInputStream(inputBytes);
ByteArrayOutputStream output = new ByteArrayOutputStream(2048);
LZMA2Options options = new LZMA2Options();
if(which == Util.LZMA) {
out = new LZMAOutputStream(output, options, -1);
}else if(which == Util.XZ){
out = new XZOutputStream(output, options);
}
byte[] inputBuffer = new byte[inputBytes.length];
int size;
while ((size = input.read(inputBuffer)) != -1) {
out.write(inputBuffer, 0, size);
}
out.finish();
return output.toByteArray();
} catch (IOException ex) {
Logger.getLogger(Util.class.getName()).log(Level.SEVERE, null, ex);
} finally {
try {
out.close();
} catch (IOException ex) {
Logger.getLogger(Util.class.getName()).log(Level.SEVERE, null, ex);
}
}
return null;
}
/**
* Utility function that decompresses data that has been compressed using the LZMA algorithm
* by the {@link Util#compress(byte[], int)} method.
* @param inputBytes Compressed data.
* @param which Which subclass if InputStream to use.
* @return Uncompressed data
* @author Henry Varona
*/
public static byte[] decompress(byte[] inputBytes, int which) {
InputStream in = null;
try {
System.out.println("Bytes: "+Util.bytesToHex(inputBytes));
ByteArrayInputStream input = new ByteArrayInputStream(inputBytes);
ByteArrayOutputStream output = new ByteArrayOutputStream(16*2048);
if(which == XZ) {
in = new XZInputStream(input);
}else if(which == LZMA){
in = new LZMAInputStream(input);
}
int size;
try{
while ((size = in.read()) != -1) {
output.write(size);
}
}catch(CorruptedInputException e){
// Taking property byte
byte[] properties = Arrays.copyOfRange(inputBytes, 0, 1);
// Taking dict size bytes
byte[] dictSize = Arrays.copyOfRange(inputBytes, 1, 5);
// Taking uncompressed size bytes
byte[] uncompressedSize = Arrays.copyOfRange(inputBytes, 5, 13);
// Reversing bytes in header
byte[] header = Bytes.concat(properties, Util.revertBytes(dictSize), Util.revertBytes(uncompressedSize));
byte[] payload = Arrays.copyOfRange(inputBytes, 13, inputBytes.length);
// Trying again
input = new ByteArrayInputStream(Bytes.concat(header, payload));
output = new ByteArrayOutputStream(2048);
if(which == XZ) {
in = new XZInputStream(input);
}else if(which == LZMA){
in = new LZMAInputStream(input);
}
try{
while ((size = in.read()) != -1) {
output.write(size);
}
}catch(CorruptedInputException ex){
System.out.println("CorruptedInputException. Msg: "+ex.getMessage());
}
}
in.close();
return output.toByteArray();
} catch (IOException ex) {
Logger.getLogger(Util.class.getName()).log(Level.SEVERE, null, ex);
}
return null;
}
/**
* Returns an array of bytes with the underlying data used to represent an integer in the reverse form.
* This is useful for endianess switches, meaning that if you give this function a big-endian integer
* it will return it's little-endian bytes.
* @param input An Integer value.
* @return The array of bytes that represent this value in the reverse format.
*/
public static byte[] revertInteger(Integer input){
return ByteBuffer.allocate(Integer.SIZE / 8).putInt(Integer.reverseBytes(input)).array();
}
/**
* Same operation as in the revertInteger function, but in this case for a short (2 bytes) value.
* @param input A Short value
* @return The array of bytes that represent this value in the reverse format.
*/
public static byte[] revertShort(Short input){
return ByteBuffer.allocate(Short.SIZE / 8).putShort(Short.reverseBytes(input)).array();
}
/**
* Same operation as in the revertInteger function, but in this case for a long (8 bytes) value.
* @param input A Long value
* @return The array of bytes that represent this value in the reverse format.
*/
public static byte[] revertLong(Long input) {
return ByteBuffer.allocate(Long.SIZE / 8).putLong(Long.reverseBytes(input)).array();
}
/**
* Same operation as in the revertInteger function, but with an UnsignedLong object as argument.
* @param input An UnsignedLong class instance
* @return The array of bytes that represent this value in the reverse format.
*/
public static byte[] revertUnsignedLong(UnsignedLong input){
return ByteBuffer.allocate(Long.SIZE / 8).putLong(Long.reverseBytes(input.longValue())).array();
}
public static byte[] revertBytes(byte[] array){
byte[] reverted = new byte[array.length];
for(int i = 0; i < reverted.length; i++){
reverted[i] = array[array.length - i - 1];
}
return reverted;
}
/**
* Function to encrypt a message with AES
* @param input data to encrypt
* @param key key for encryption
* @return AES Encription of input
*/
public static byte[] encryptAES(byte[] input, byte[] key) {
try {
MessageDigest md = MessageDigest.getInstance("SHA-512");
byte[] result = md.digest(key);
byte[] ivBytes = new byte[16];
System.arraycopy(result, 32, ivBytes, 0, 16);
byte[] sksBytes = new byte[32];
System.arraycopy(result, 0, sksBytes, 0, 32);
PaddedBufferedBlockCipher cipher = new PaddedBufferedBlockCipher(new CBCBlockCipher(new AESFastEngine()));
cipher.init(true, new ParametersWithIV(new KeyParameter(sksBytes), ivBytes));
byte[] temp = new byte[input.length + (16 - (input.length % 16))];
System.arraycopy(input, 0, temp, 0, input.length);
Arrays.fill(temp, input.length, temp.length, (byte) (16 - (input.length % 16)));
byte[] out = new byte[cipher.getOutputSize(temp.length)];
int proc = cipher.processBytes(temp, 0, temp.length, out, 0);
cipher.doFinal(out, proc);
temp = new byte[out.length - 16];
System.arraycopy(out, 0, temp, 0, temp.length);
return temp;
} catch (NoSuchAlgorithmException | DataLengthException | IllegalStateException | InvalidCipherTextException ex) {
}
return null;
}
/**
* Function to decrypt a message with AES encryption
* @param input data to decrypt
* @param key key for decryption
* @return input decrypted with AES. Null if the decrypt failed (Bad Key)
*/
public static byte[] decryptAES(byte[] input, byte[] key) {
try {
MessageDigest md = MessageDigest.getInstance("SHA-512");
byte[] result = md.digest(key);
byte[] ivBytes = new byte[16];
System.arraycopy(result, 32, ivBytes, 0, 16);
byte[] sksBytes = new byte[32];
System.arraycopy(result, 0, sksBytes, 0, 32);
PaddedBufferedBlockCipher cipher = new PaddedBufferedBlockCipher(new CBCBlockCipher(new AESFastEngine()));
cipher.init(false, new ParametersWithIV(new KeyParameter(sksBytes), ivBytes));
byte[] pre_out = new byte[cipher.getOutputSize(input.length)];
int proc = cipher.processBytes(input, 0, input.length, pre_out, 0);
int proc2 = cipher.doFinal(pre_out, proc);
byte[] out = new byte[proc+proc2];
System.arraycopy(pre_out, 0, out, 0, proc+proc2);
//Unpadding
byte countByte = (byte)((byte)out[out.length-1] % 16);
int count = countByte & 0xFF;
if ((count > 15) || (count <= 0)){
return out;
}
byte[] temp = new byte[count];
int srcPos = out.length - count > 0 ? out.length - count : 0;
int length = count < out.length ? count : out.length;
System.arraycopy(out, srcPos, temp, 0, length);
byte[] temp2 = new byte[count];
Arrays.fill(temp2, (byte) count);
if (Arrays.equals(temp, temp2)) {
temp = new byte[out.length - count];
System.arraycopy(out, 0, temp, 0, out.length - count);
return temp;
} else {
return out;
}
} catch (NoSuchAlgorithmException | DataLengthException | IllegalStateException | InvalidCipherTextException ex) {
ex.printStackTrace();
}
return null;
}
/**
* Transform an array of bytes to an hex String representation
* @param input array of bytes to transform as a string
* @return Input as a String
*/
public static String byteToString(byte[] input) {
StringBuilder result = new StringBuilder();
for (byte in : input) {
if ((in & 0xff) < 0x10) {
result.append("0");
}
result.append(Integer.toHexString(in & 0xff));
}
return result.toString();
}
/**
* Converts a base value to its standard version, considering the precision of the asset.
*
* By standard representation we mean here the value that is usually presented to the user,
* and which already takes into account the precision of the asset.
*
* For example, a base representation of the core token BTS would be 260000. By taking into
* consideration the precision, the same value when converted to the standard format will
* be 2.6 BTS.
*
* @param assetAmount: The asset amount instance.
* @return: Converts from base to standard representation.
*/
public static double fromBase(AssetAmount assetAmount){
long value = assetAmount.getAmount().longValue();
int precision = assetAmount.getAsset().getPrecision();
if(precision != 0)
return value / Math.pow(10, precision);
else
return 0;
}
/**
* Converts a value and its corresponding precision to a base value.
* @param value: The value in the standard format
* @param precision: The precision of the asset.
* @return: A value in its base representation.
*/
public static long toBase(double value, int precision){
return (long) (value * Math.pow(10, precision));
}
/**
* Creates a hash for HTLC operations.
*
* @param preimage The data we want to operate on.
* @param hashType The type of hash.
* @return The hash.
* @throws NoSuchAlgorithmException
*/
public static byte[] htlcHash(byte[] preimage, HtlcHashType hashType) throws NoSuchAlgorithmException {
byte[] out = null;
GeneralDigest digest = null;
switch(hashType){
case RIPEMD160:
digest = new RIPEMD160Digest();
out = new byte[20];
break;
case SHA1:
digest = new SHA1Digest();
out = new byte[20];
break;
case SHA256:
digest = new SHA256Digest();
out = new byte[32];
break;
default:
throw new IllegalArgumentException("Not supported hash function!");
}
digest.update(preimage, 0, preimage.length);
digest.doFinal(out, 0);
return out;
}
}