Multiaddress stability fixes

master
John Jones 2017-04-16 23:46:07 -05:00
parent c96c1db14c
commit f0961a247f
7 changed files with 240 additions and 188 deletions

View File

@ -124,7 +124,6 @@ int multiaddr_encoding_base58_decode(const char* b58, size_t base58_size, unsign
* @param base58_size the size of the results buffer * @param base58_size the size of the results buffer
* @returns true(1) on success * @returns true(1) on success
*/ */
//int libp2p_crypto_encoding_base58_encode(const unsigned char* binary_data, size_t binary_data_size, unsigned char* base58, size_t* base58_size)
int multiaddr_encoding_base58_encode(const unsigned char* data, size_t binsz, unsigned char** b58, size_t* b58sz) int multiaddr_encoding_base58_encode(const unsigned char* data, size_t binsz, unsigned char** b58, size_t* b58sz)
{ {
const uint8_t* bin = data; const uint8_t* bin = data;

View File

@ -39,7 +39,16 @@ char * int2ip(int inputintip);
*/ */
int bytes_to_string(char** results, const uint8_t* bytes, int bytes_size); int bytes_to_string(char** results, const uint8_t* bytes, int bytes_size);
char * address_string_to_bytes(struct Protocol * xx, const char * abc, size_t getsznow); /**
* Convert an address string to a byte representation
* @param protocol the protocol to use
* @param incoming the byte array
* @param incoming_size the size of the byte array
* @param results the results
* @param results_size the size of the results
* @returns the results array
*/
char * address_string_to_bytes(struct Protocol *protocol, const char *incoming, size_t incoming_size, char** results, int *results_size);
int string_to_bytes(uint8_t** finalbytes,size_t* realbbsize, const char * strx, size_t strsize); int string_to_bytes(uint8_t** finalbytes,size_t* realbbsize, const char * strx, size_t strsize);

View File

@ -28,10 +28,13 @@ char * Int_To_Hex(uint64_t int2hex); //VAR[binformat] TO HEX
uint64_t Hex_To_Int(char * hax); uint64_t Hex_To_Int(char * hax);
// /**
void vthconvert(int size, char * crrz01, uint8_t * xbuf); * Convert binary array to array of hex values
* @param incoming the binary array
char * Var_To_Hex(int realsize, const uint8_t * TOHEXINPUT); //VAR[binformat] TO HEX * @param incoming_size the size of the incoming array
* @returns the allocated array
*/
unsigned char *Var_To_Hex(const char *incoming, int incoming_size);
/** /**
* Turn a hex string into a byte array * Turn a hex string into a byte array

View File

@ -51,13 +51,16 @@ struct MultiAddress* multiaddress_new_from_bytes(const uint8_t* byteaddress, int
multiaddress_free(out); multiaddress_free(out);
return NULL; return NULL;
} }
memcpy(out->bytes, byteaddress, size);
out->bsize = size; out->bsize = size;
memcpy(out->bytes, byteaddress, size);
if(!bytes_to_string(&out->string,byteaddress,size)==1) if(!bytes_to_string(&out->string,byteaddress,size)==1)
{ {
multiaddress_free(out); multiaddress_free(out);
return NULL; return NULL;
} }
} else {
multiaddress_free(out);
return NULL;
} }
} }
return out; return out;

View File

@ -302,87 +302,75 @@ char * int2ip(int inputintip)
*/ */
int bytes_to_string(char** buffer, const uint8_t* in_bytes, int in_bytes_size) int bytes_to_string(char** buffer, const uint8_t* in_bytes, int in_bytes_size)
{ {
*buffer = malloc(800);
char* resultzx = *buffer;
bzero(resultzx, 800);
uint8_t * bytes = NULL; uint8_t * bytes = NULL;
int size = 0; char *results = NULL;
size = in_bytes_size; int size = in_bytes_size;
struct ProtocolListItem* head = NULL; struct ProtocolListItem* head = NULL;
load_protocols(&head); char hex[(in_bytes_size*2)+1];
char hex[in_bytes_size*2];
bzero(hex,in_bytes_size*2);
strcat(hex,Var_To_Hex(size, in_bytes));
//Positioning for memory jump: //Positioning for memory jump:
int lastpos = 0; int lastpos = 0;
char pid[3]; char pid[3];
// set up variables
load_protocols(&head);
memset(hex, 0, (in_bytes_size * 2) + 1);
char* tmp = Var_To_Hex(in_bytes, size);
memcpy(hex, tmp, in_bytes_size * 2);
free(tmp);
pid[2] = 0;
// allocate memory for results
*buffer = malloc(800);
results = *buffer;
memset(results, 0, 800);
//Process Hex String //Process Hex String
//printf("FULL HEX: %s", hex);
NAX: NAX:
//printf("REDO!!!!!\n");
//Stage 1 ID: //Stage 1 ID:
if(lastpos!=0)
{
//lastpos++;
}
pid[0] = hex[lastpos]; pid[0] = hex[lastpos];
pid[1] = hex[lastpos+1]; pid[1] = hex[lastpos+1];
pid[2] = '\0';
//printf("pid: %s\n",pid); int protocol_int = Hex_To_Int(pid);
if(proto_with_deccode(head, Hex_To_Int(pid))) struct Protocol* protocol = proto_with_deccode(head, protocol_int);
if(protocol != NULL)
{ {
//////////Stage 2: Address //////////Stage 2: Address
struct Protocol * PID; if(strcmp(protocol->name,"ipfs")!=0)
PID = NULL;
PID = proto_with_deccode(head, Hex_To_Int(pid));
if(strcmp(PID->name,"ipfs")!=0)
{ {
lastpos = lastpos+2; lastpos = lastpos+2;
char address[(PID->size/4)+1]; char address[(protocol->size/4)+1];
bzero(address,(PID->size/4)+1); memset(address, 0, (protocol->size / 4) + 1);
address[(PID->size/4)]='\0'; memcpy(address, &hex[lastpos], protocol->size / 4);
int x=0; //////////Stage 3 Process it back to string
//printf("\nHEX TO DECODE: %s\n",hex); lastpos= lastpos+(protocol->size/4);
for(int i = lastpos;i<(PID->size/4)+lastpos;i++)
{
address[x] = hex[i];
//printf("HEX[%d]=%c\n",i,hex[i]);
x++;
}
//////////Stage 3 Process it back to string
//printf("Protocol: %s\n", PID->name);
//printf("Address : %s\n", address);
lastpos= lastpos+(PID->size/4);
//printf("lastpos: %d\n",lastpos);
//////////Address: //////////Address:
//Keeping Valgrind happy //Keeping Valgrind happy
char name[30]; char name[30];
bzero(name,30); bzero(name,30);
strcpy(name, PID->name); strcpy(name, protocol->name);
// //
strcat(resultzx, "/"); strcat(results, "/");
strcat(resultzx, name); strcat(results, name);
strcat(resultzx, "/"); strcat(results, "/");
if(strcmp(name, "ip4")==0) if(strcmp(name, "ip4")==0)
{ {
strcat(resultzx,int2ip(Hex_To_Int(address))); strcat(results,int2ip(Hex_To_Int(address)));
} }
else if(strcmp(name, "tcp")==0) else if(strcmp(name, "tcp")==0)
{ {
char a[5]; char a[5];
sprintf(a,"%lu",Hex_To_Int(address)); sprintf(a,"%lu",Hex_To_Int(address));
strcat(resultzx,a); strcat(results,a);
} }
else if(strcmp(name, "udp")==0) else if(strcmp(name, "udp")==0)
{ {
char a[5]; char a[5];
sprintf(a,"%lu",Hex_To_Int(address)); sprintf(a,"%lu",Hex_To_Int(address));
strcat(resultzx,a); strcat(results,a);
} }
//printf("Address(hex):%s\n",address); /////////////Done processing this, move to next if there is more.
//printf("TESTING: %s\n",resultzx);
/////////////Done processing this, move to next if there is more.
if(lastpos<size*2) if(lastpos<size*2)
{ {
goto NAX; goto NAX;
@ -390,78 +378,77 @@ int bytes_to_string(char** buffer, const uint8_t* in_bytes, int in_bytes_size)
} }
else//IPFS CASE else//IPFS CASE
{ {
lastpos = lastpos + 4; lastpos = lastpos + 4;
//FETCHING SIZE OF ADDRESS //fetch the size of the address based on the varint prefix
char prefixedvarint[3]; char prefixedvarint[3];
bzero(prefixedvarint,3); memset(prefixedvarint, 0, 3);
int pvi; memcpy(prefixedvarint, &hex[lastpos-2], 2);
pvi=0; int addrsize = HexVar_To_Num_32(prefixedvarint);
for(int i=lastpos-2;i<lastpos;i++)
{ // get the ipfs address as hex values
prefixedvarint[pvi] = hex[i];
pvi++;
}
int addrsize;
addrsize = HexVar_To_Num_32(prefixedvarint);
unsigned char IPFS_ADDR[addrsize+1]; unsigned char IPFS_ADDR[addrsize+1];
bzero(IPFS_ADDR,addrsize+1); memset(IPFS_ADDR, 0, addrsize + 1);
int IPFS_PARSE; memcpy(IPFS_ADDR, &hex[lastpos], addrsize);
IPFS_PARSE = 0; // convert the address from hex values to a binary array
for(int i = lastpos;i<lastpos+addrsize;i++)
{
IPFS_ADDR[IPFS_PARSE] = hex[i];
//printf("\nIPFS_ADDR[%d] = %c\n\n",IPFS_PARSE,hex[i]);
IPFS_PARSE++;
}
size_t num_bytes = 0; size_t num_bytes = 0;
unsigned char* addrbuf = Hex_To_Var(IPFS_ADDR, &num_bytes); unsigned char* addrbuf = Hex_To_Var(IPFS_ADDR, &num_bytes);
size_t rezbuflen = strlen(IPFS_ADDR); size_t b58_size = strlen(IPFS_ADDR);
unsigned char rezultat[rezbuflen]; unsigned char b58[b58_size];
bzero(rezultat,rezbuflen); memset(b58, 0, b58_size);
unsigned char * pointyaddr = NULL; unsigned char *ptr_b58 = b58;
pointyaddr = rezultat; int returnstatus = multiaddr_encoding_base58_encode(addrbuf, num_bytes, &ptr_b58, &b58_size);
int returnstatus = 0;
returnstatus = multiaddr_encoding_base58_encode(addrbuf, sizeof(IPFS_ADDR)/2, &pointyaddr, &rezbuflen);
free(addrbuf); free(addrbuf);
if(returnstatus == 0) if(returnstatus == 0)
{ {
printf("\nERROR!!!!!\n"); fprintf(stderr, "Unable to base58 encode MultiAddress %s\n", IPFS_ADDR);
unload_protocols(head); unload_protocols(head);
return 0; return 0;
} }
strcat(resultzx, "/"); strcat(results, "/");
strcat(resultzx, PID->name); strcat(results, protocol->name);
strcat(resultzx, "/"); strcat(results, "/");
strcat(resultzx, rezultat); strcat(results, b58);
} }
} }
strcat(resultzx, "/"); strcat(results, "/");
unload_protocols(head); unload_protocols(head);
return 1; return 1;
} }
// //
char * address_string_to_bytes(struct Protocol * xx, const char * abc,size_t getsznow) /**
* Convert an address string to a byte representation
* @param protocol the protocol to use
* @param incoming the byte array
* @param incoming_size the size of the byte array
* @param results the results
* @param results_size the size of the results
* @returns the results array
*/
char* address_string_to_bytes(struct Protocol * protocol, const char *incoming, size_t incoming_size, char** results, int* results_size)
{ {
static char astb__stringy[800] = "\0"; static char astb__stringy[800] = "\0";
bzero(astb__stringy,800); memset(astb__stringy, 0, 800);
int code = 0; int code = 0;
code = xx->deccode; code = protocol->deccode;
switch(code) switch(code)
{ {
case 4://IPv4 case 4://IPv4
{ {
char testip[16] = "\0"; char testip[16] = "\0";
bzero(testip,16); bzero(testip,16);
strcpy(testip,abc); strcpy(testip,incoming);
if(is_valid_ipv4(testip)==1) if(is_valid_ipv4(testip)==1)
{ {
uint64_t iip = ip2int(abc); uint64_t iip = ip2int(incoming);
strcpy(astb__stringy,Int_To_Hex(iip)); strcpy(astb__stringy,Int_To_Hex(iip));
xx = NULL; protocol = NULL;
return astb__stringy; *results = malloc(strlen(astb__stringy));
memcpy(*results, astb__stringy, strlen(astb__stringy));
*results_size = strlen(astb__stringy);
return *results;
} }
else else
{ {
@ -476,11 +463,11 @@ char * address_string_to_bytes(struct Protocol * xx, const char * abc,size_t get
} }
case 6: //Tcp case 6: //Tcp
{ {
if(atoi(abc)<65536&&atoi(abc)>0) if(atoi(incoming)<65536&&atoi(incoming)>0)
{ {
static char himm_woot[5] = "\0"; static char himm_woot[5] = "\0";
bzero(himm_woot, 5); bzero(himm_woot, 5);
strcpy(himm_woot, Int_To_Hex(atoi(abc))); strcpy(himm_woot, Int_To_Hex(atoi(incoming)));
if(himm_woot[2] == '\0') if(himm_woot[2] == '\0')
{//manual switch {//manual switch
char swap0='0'; char swap0='0';
@ -504,7 +491,10 @@ char * address_string_to_bytes(struct Protocol * xx, const char * abc,size_t get
himm_woot[3] = swap3; himm_woot[3] = swap3;
} }
himm_woot[4]='\0'; himm_woot[4]='\0';
return himm_woot; *results = malloc(5);
*results_size = 5;
memcpy(*results, himm_woot, 5);
return *results;
} }
else else
{ {
@ -514,11 +504,11 @@ char * address_string_to_bytes(struct Protocol * xx, const char * abc,size_t get
} }
case 17: //Udp case 17: //Udp
{ {
if(atoi(abc)<65536&&atoi(abc)>0) if(atoi(incoming)<65536&&atoi(incoming)>0)
{ {
static char himm_woot2[5] = "\0"; static char himm_woot2[5] = "\0";
bzero(himm_woot2, 5); bzero(himm_woot2, 5);
strcpy(himm_woot2, Int_To_Hex(atoi(abc))); strcpy(himm_woot2, Int_To_Hex(atoi(incoming)));
if(himm_woot2[2] == '\0') if(himm_woot2[2] == '\0')
{//Manual Switch2be {//Manual Switch2be
char swap0='0'; char swap0='0';
@ -542,7 +532,10 @@ char * address_string_to_bytes(struct Protocol * xx, const char * abc,size_t get
himm_woot2[3] = swap3; himm_woot2[3] = swap3;
} }
himm_woot2[4]='\0'; himm_woot2[4]='\0';
return himm_woot2; *results = malloc(5);
*results_size = 5;
memcpy(*results, himm_woot2, 5);
return *results;
} }
else else
{ {
@ -553,98 +546,82 @@ char * address_string_to_bytes(struct Protocol * xx, const char * abc,size_t get
case 33://dccp case 33://dccp
{ {
return "ERR"; return "ERR";
break;
} }
case 132://sctp case 132://sctp
{ {
return "ERR"; return "ERR";
break;
} }
case 301://udt case 301://udt
{ {
return "ERR"; return "ERR";
break;
} }
case 302://utp case 302://utp
{ {
return "ERR"; return "ERR";
break;
} }
case 42://IPFS - !!! case 42://IPFS - !!!
{ {
char * x_data = NULL; // decode the base58 to bytes
x_data = (char*) abc; char * incoming_copy = NULL;
size_t x_data_length = strlen(x_data); incoming_copy = (char*)incoming;
size_t result_buffer_length = multiaddr_encoding_base58_decode_max_size((unsigned char*)x_data); size_t incoming_copy_size = strlen(incoming_copy);
size_t result_buffer_length = multiaddr_encoding_base58_decode_max_size((unsigned char*)incoming_copy);
unsigned char result_buffer[result_buffer_length]; unsigned char result_buffer[result_buffer_length];
unsigned char* ptr_to_result = result_buffer; unsigned char* ptr_to_result = result_buffer;
memset(result_buffer, 0, result_buffer_length); memset(result_buffer, 0, result_buffer_length);
// now get the decoded address // now get the decoded address
int return_value = multiaddr_encoding_base58_decode(incoming_copy, incoming_copy_size, &ptr_to_result, &result_buffer_length);
int return_value = multiaddr_encoding_base58_decode(x_data, x_data_length, &ptr_to_result, &result_buffer_length);
if (return_value == 0) if (return_value == 0)
{ {
return "ERR"; return "ERR";
} }
// throw everything in a hex string so we can debug the results // throw everything in a hex string so we can debug the results
static char returning_result[300]; char addr_encoded[300];
bzero(returning_result,300); memset(addr_encoded, 0, 300);
char ADDR_ENCODED[300];
bzero(ADDR_ENCODED,300);
int ilen = 0; int ilen = 0;
bzero(returning_result,300);
for(int i = 0; i < result_buffer_length; i++) for(int i = 0; i < result_buffer_length; i++)
{ {
// get the char so we can see it in the debugger // get the char so we can see it in the debugger
unsigned char c = ptr_to_result[i];
char miu[3]; char miu[3];
bzero(miu, 3); sprintf(miu,"%02x", ptr_to_result[i]);
miu[2] = '\0'; strcat(addr_encoded, miu);
sprintf(miu,"%02x", c);
strcat(ADDR_ENCODED, miu);
} }
ilen = strlen(ADDR_ENCODED); ilen = strlen(addr_encoded);
char prefixed[3]; char prefixed[3];
memset(prefixed, 0, 3);
strcpy(prefixed,Num_To_HexVar_32(ilen)); strcpy(prefixed,Num_To_HexVar_32(ilen));
prefixed[2] = '\0'; *results_size = ilen + 3;
strcat(returning_result, prefixed); *results = malloc(*results_size);
strcat(returning_result, ADDR_ENCODED); memset(*results, 0, *results_size);
//printf("ADDRESS: %s\nSIZEADDR: %d\n",ADDR_ENCODED,ilen); strcat(*results, prefixed); // 2 bytes
//printf("NOW DECODED VARINT: %d", HexVar_To_Num_32(prefixed)); strcat(*results, addr_encoded); // ilen bytes + null terminator
return returning_result; return *results;
break;
} }
case 480://http case 480://http
{ {
return "ERR"; return "ERR";
break;
} }
case 443://https case 443://https
{ {
return "ERR"; return "ERR";
break;
} }
case 477://ws case 477://ws
{ {
return "ERR"; return "ERR";
break;
} }
case 444://onion case 444://onion
{ {
return "ERR"; return "ERR";
break;
} }
case 275://libp2p-webrtc-star case 275://libp2p-webrtc-star
{ {
return "ERR"; return "ERR";
break;
} }
default: default:
{ {
printf("NO SUCH PROTOCOL!\n"); printf("NO SUCH PROTOCOL!\n");
return "ERR"; return "ERR";
break;
} }
} }
} }
@ -690,10 +667,9 @@ int string_to_bytes(uint8_t** finalbytes, size_t* realbbsize, const char* strx,
{ {
if(firstorsecond==1)//This is the Protocol if(firstorsecond==1)//This is the Protocol
{ {
if(proto_with_name(head, wp)) protx = proto_with_name(head, wp);
if(protx != NULL)
{ {
protx=proto_with_name(head, wp);
//printf("PROTOCOL: %s\n",protx->name);
strcat(processed, Int_To_Hex(protx->deccode)); strcat(processed, Int_To_Hex(protx->deccode));
firstorsecond=2;//Since the next word will be an address firstorsecond=2;//Since the next word will be an address
} }
@ -706,16 +682,18 @@ int string_to_bytes(uint8_t** finalbytes, size_t* realbbsize, const char* strx,
} }
else//This is the address else//This is the address
{ {
//printf("ADDRESS: %s\n",wp); char* s_to_b = NULL;
if(address_string_to_bytes(protx, wp,strlen(wp)) == "ERR") int s_to_b_size = 0;
if(address_string_to_bytes(protx, wp,strlen(wp), &s_to_b, &s_to_b_size) == "ERR")
{ {
malf = 1; malf = 1;
//printf("\n\nTRIGGERED!!!!!!!!!!!!!!!!!!!!!!!\n\n");
} }
else else
{ {
strcat(processed,address_string_to_bytes(protx, wp,strlen(wp))); int temp_size = strlen(processed);
//printf("Addressinbytes: %s\n",address_string_to_bytes(protx, wp,strlen(wp))); strncat(processed, s_to_b, s_to_b_size);
processed[temp_size + s_to_b_size] = 0;
free(s_to_b);
} }
protx=NULL;//Since right now it doesn't need that assignment anymore. protx=NULL;//Since right now it doesn't need that assignment anymore.
firstorsecond=1;//Since the next word will be an protocol firstorsecond=1;//Since the next word will be an protocol

View File

@ -1,6 +1,7 @@
#pragma once #pragma once
#include "multiaddr/multiaddr.h" #include "multiaddr/multiaddr.h"
#include "multiaddr/varhexutils.h"
int test_new_from_string() { int test_new_from_string() {
struct MultiAddress* a = multiaddress_new_from_string("/ip4/127.0.0.1/tcp/8080/"); struct MultiAddress* a = multiaddress_new_from_string("/ip4/127.0.0.1/tcp/8080/");
@ -19,22 +20,30 @@ int test_full() {
printf("INITIAL: %s\n",addrstr); printf("INITIAL: %s\n",addrstr);
struct MultiAddress* a; struct MultiAddress* a;
a= multiaddress_new_from_string(addrstr); a= multiaddress_new_from_string(addrstr);
printf("TEST BYTES: %s\n",Var_To_Hex(a->bsize, a->bytes)); unsigned char* tmp = Var_To_Hex(a->bytes, a->bsize);
printf("TEST BYTES: %s\n", tmp);
free(tmp);
//Remember, Decapsulation happens from right to left, never in reverse! //Remember, Decapsulation happens from right to left, never in reverse!
printf("A STRING:%s\n",a->string); printf("A STRING:%s\n",a->string);
multiaddress_encapsulate(a,"/udp/3333/"); multiaddress_encapsulate(a,"/udp/3333/");
printf("A STRING ENCAPSULATED:%s\n",a->string); printf("A STRING ENCAPSULATED:%s\n",a->string);
printf("TEST BYTES: %s\n",Var_To_Hex(a->bsize, a->bytes)); tmp = Var_To_Hex(a->bytes, a->bsize);
printf("TEST BYTES: %s\n", tmp);
free(tmp);
multiaddress_decapsulate(a,"udp"); multiaddress_decapsulate(a,"udp");
printf("A STRING DECAPSULATED UDP:%s\n",a->string); printf("A STRING DECAPSULATED UDP:%s\n",a->string);
printf("TEST BYTES: %s\n",Var_To_Hex(a->bsize, a->bytes)); tmp = Var_To_Hex(a->bytes, a->bsize);
printf("TEST BYTES: %s\n", tmp);
free(tmp);
multiaddress_encapsulate(a,"/udp/3333/"); multiaddress_encapsulate(a,"/udp/3333/");
printf("A STRING ENCAPSULATED UDP: %s\n",a->string); printf("A STRING ENCAPSULATED UDP: %s\n",a->string);
multiaddress_encapsulate(a,"/ipfs/QmYwAPJzv5CZsnA625s3Xf2nemtYgPpHdWEz79ojWnPbdG"); multiaddress_encapsulate(a,"/ipfs/QmYwAPJzv5CZsnA625s3Xf2nemtYgPpHdWEz79ojWnPbdG");
printf("A STRING ENCAPSULATED IPFS:%s\n",a->string); printf("A STRING ENCAPSULATED IPFS:%s\n",a->string);
printf("TEST BYTES: %s\n",Var_To_Hex(a->bsize, a->bytes)); tmp = Var_To_Hex(a->bytes, a->bsize);
printf("TEST BYTES: %s\n", tmp);
free(tmp);
printf("TEST BYTE SIZE: %lu\n",a->bsize); printf("TEST BYTE SIZE: %lu\n",a->bsize);
struct MultiAddress* beta; struct MultiAddress* beta;
@ -69,6 +78,7 @@ int test_int_to_hex() {
} }
int test_multiaddr_utils() { int test_multiaddr_utils() {
int retVal = 0;
struct MultiAddress* addr = multiaddress_new_from_string("/ip4/127.0.0.1/tcp/4001/"); struct MultiAddress* addr = multiaddress_new_from_string("/ip4/127.0.0.1/tcp/4001/");
if (!multiaddress_is_ip(addr)) { if (!multiaddress_is_ip(addr)) {
fprintf(stderr, "The address should be an IP\n"); fprintf(stderr, "The address should be an IP\n");
@ -78,28 +88,36 @@ int test_multiaddr_utils() {
multiaddress_get_ip_address(addr, &ip); multiaddress_get_ip_address(addr, &ip);
if (ip == NULL) { if (ip == NULL) {
fprintf(stderr, "get_ip_address returned NULL\n"); fprintf(stderr, "get_ip_address returned NULL\n");
return 0; goto exit;
} }
if(strcmp(ip, "127.0.0.1") != 0) { if(strcmp(ip, "127.0.0.1") != 0) {
fprintf(stderr, "ip addresses are not equal\n"); fprintf(stderr, "ip addresses are not equal\n");
return 0; goto exit;
} }
int port = multiaddress_get_ip_port(addr); int port = multiaddress_get_ip_port(addr);
if (port != 4001) { if (port != 4001) {
fprintf(stderr, "port incorrect. %d was returned instead of %d\n", port, 4001); fprintf(stderr, "port incorrect. %d was returned instead of %d\n", port, 4001);
return 0; goto exit;
} }
return 1;
retVal = 1;
exit:
if (ip != NULL)
free(ip);
if (addr != NULL)
multiaddress_free(addr);
return retVal;
} }
int test_multiaddr_peer_id() { int test_multiaddr_peer_id() {
char* orig_address = "QmKhhKHkjhkjhKjhiuhKJh"; char* orig_address = "QmYwAPJzv5CZsnA625s3Xf2nemtYgPpHdWEz79ojWnPbdG";
char full_string[255]; char full_string[255];
char* result = NULL; char* result = NULL;
char* bytes = NULL;
int retVal = 0; int retVal = 0;
struct MultiAddress* addr; struct MultiAddress *addr = NULL, *addr2 = NULL;
sprintf(full_string, "/ip4/127.0.0.1/tcp/4001/ipfs/%s", orig_address); sprintf(full_string, "/ip4/127.0.0.1/tcp/4001/ipfs/%s/", orig_address);
addr = multiaddress_new_from_string(full_string); addr = multiaddress_new_from_string(full_string);
@ -108,10 +126,51 @@ int test_multiaddr_peer_id() {
if (result == NULL || strncmp(result, orig_address, strlen(orig_address)) != 0) if (result == NULL || strncmp(result, orig_address, strlen(orig_address)) != 0)
goto exit; goto exit;
result = NULL;
// switch to bytes and back again to verify the peer id follows...
// 1. display the original bytes
result = Var_To_Hex(addr->bytes, addr->bsize);
fprintf(stderr, "Original Bytes: %s\n", result);
free(result);
result = NULL;
// make a new MultiAddress from bytes
bytes = malloc(addr->bsize);
memcpy(bytes, addr->bytes, addr->bsize);
addr2 = multiaddress_new_from_bytes(bytes, addr->bsize);
free(bytes);
bytes = NULL;
// 2. Display the resultant bytes
result = Var_To_Hex(addr2->bytes, addr2->bsize);
fprintf(stderr, "New Bytes: %s\n", result);
free(result);
result = NULL;
if (strcmp(full_string, addr2->string) != 0) {
fprintf(stderr, "Original string was %s but new string is %s\n", full_string, addr2->string);
goto exit;
}
int port = multiaddress_get_ip_port(addr2);
if (port != 4001) {
fprintf(stderr, "Original string had port 4001, but now reporting %d\n", port);
goto exit;
}
retVal = 1; retVal = 1;
exit: exit:
if (addr != NULL) if (addr != NULL)
multiaddress_free(addr); multiaddress_free(addr);
if (addr2 != NULL)
multiaddress_free(addr2);
if (result != NULL)
free(result);
if (bytes != NULL)
free(bytes);
return retVal; return retVal;
} }

View File

@ -77,41 +77,42 @@ uint64_t Hex_To_Int(char * hax)
} }
return val; return val;
} }
//
void vthconvert(int size, char * crrz01, const uint8_t * xbuf)
{
uint8_t buf[400];
bzero(buf,400);
//fixing the buf /**
for(int cz=0; cz<size;cz++) * Convert a byte array into a hex byte array
{ * @param in the incoming byte array
buf[cz] = xbuf[cz]; * @param in_size the size of in
} * @param out the resultant array of hex bytes
// */
if(crrz01!=NULL) void vthconvert(const unsigned char* in, int in_size, unsigned char** out)
{ {
char * crrz1 = NULL; *out = (unsigned char*)malloc( (in_size * 2) + 1);
crrz1 = crrz01; memset(*out, 0, (in_size * 2) + 1);
char conv_proc[800]="\0"; unsigned char *ptr = *out;
int i;
for(i=0; i < (size*2); i++) for (int i = 0; i < in_size; i++) {
{ sprintf(&ptr[i * 2], "%02x", in[i]);
sprintf (conv_proc, "%02X", buf[i]);
strcat(crrz1, conv_proc);
}
crrz1 = NULL;
} }
} }
char * Var_To_Hex(int realsize, const uint8_t * TOHEXINPUT) //VAR[binformat] TO HEX
/**
* Convert binary array to array of hex values
* @param incoming the binary array
* @param incoming_size the size of the incoming array
* @returns the allocated array
*/
unsigned char * Var_To_Hex(const unsigned char *incoming, int incoming_size)
{ {
if(TOHEXINPUT != NULL) if(incoming != NULL)
{ {
static char convert_resultz1[800]="\0"; unsigned char* retVal = NULL;
bzero(convert_resultz1,800); // this does the real work
vthconvert(realsize, convert_resultz1, TOHEXINPUT); vthconvert(incoming, incoming_size, &retVal);
return convert_resultz1;
// we can't return an array that will be deallocated!
return retVal;
} }
return NULL;
} }
/** /**