/* * Copyright 2012-2014 Luke Dashjr * * This program is free software; you can redistribute it and/or modify it * under the terms of the standard MIT license. See COPYING for more details. */ #ifndef WIN32 #include #else #include #endif #include #include #include #include #include "base58.h" bool (*b58_sha256_impl)(void *, const void *, size_t) = NULL; static const int8_t b58digits_map[] = { -1,-1,-1,-1,-1,-1,-1,-1, -1,-1,-1,-1,-1,-1,-1,-1, -1,-1,-1,-1,-1,-1,-1,-1, -1,-1,-1,-1,-1,-1,-1,-1, -1,-1,-1,-1,-1,-1,-1,-1, -1,-1,-1,-1,-1,-1,-1,-1, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8,-1,-1,-1,-1,-1,-1, -1, 9,10,11,12,13,14,15, 16,-1,17,18,19,20,21,-1, 22,23,24,25,26,27,28,29, 30,31,32,-1,-1,-1,-1,-1, -1,33,34,35,36,37,38,39, 40,41,42,43,-1,44,45,46, 47,48,49,50,51,52,53,54, 55,56,57,-1,-1,-1,-1,-1, }; bool b58tobin(void *bin, size_t *binszp, const char *b58, size_t b58sz) { size_t binsz = *binszp; const unsigned char *b58u = (void*)b58; unsigned char *binu = bin; size_t outisz = (binsz + 3) / 4; uint32_t outi[outisz]; uint64_t t; uint32_t c; size_t i, j; uint8_t bytesleft = binsz % 4; uint32_t zeromask = bytesleft ? (0xffffffff << (bytesleft * 8)) : 0; unsigned zerocount = 0; if (!b58sz) b58sz = strlen(b58); memset(outi, 0, outisz * sizeof(*outi)); // Leading zeros, just count for (i = 0; i < b58sz && b58u[i] == '1'; ++i) ++zerocount; for ( ; i < b58sz; ++i) { if (b58u[i] & 0x80) // High-bit set on invalid digit return false; if (b58digits_map[b58u[i]] == -1) // Invalid base58 digit return false; c = (unsigned)b58digits_map[b58u[i]]; for (j = outisz; j--; ) { t = ((uint64_t)outi[j]) * 58 + c; c = (t & 0x3f00000000) >> 32; outi[j] = t & 0xffffffff; } if (c) // Output number too big (carry to the next int32) return false; if (outi[0] & zeromask) // Output number too big (last int32 filled too far) return false; } j = 0; switch (bytesleft) { case 3: *(binu++) = (outi[0] & 0xff0000) >> 16; case 2: *(binu++) = (outi[0] & 0xff00) >> 8; case 1: *(binu++) = (outi[0] & 0xff); ++j; default: break; } for (; j < outisz; ++j) { *(binu++) = (outi[j] >> 0x18) & 0xff; *(binu++) = (outi[j] >> 0x10) & 0xff; *(binu++) = (outi[j] >> 8) & 0xff; *(binu++) = (outi[j] >> 0) & 0xff; } // Count canonical base58 byte count binu = bin; for (i = 0; i < binsz; ++i) { if (binu[i]) break; --*binszp; } *binszp += zerocount; return true; } static bool my_dblsha256(void *hash, const void *data, size_t datasz) { uint8_t buf[0x20]; return b58_sha256_impl(buf, data, datasz) && b58_sha256_impl(hash, buf, sizeof(buf)); } int b58check(const void *bin, size_t binsz, const char *base58str, size_t b58sz) { unsigned char buf[32]; const uint8_t *binc = bin; unsigned i; if (binsz < 4) return -4; if (!my_dblsha256(buf, bin, binsz - 4)) return -2; if (memcmp(&binc[binsz - 4], buf, 4)) return -1; // Check number of zeros is correct AFTER verifying checksum (to avoid possibility of accessing base58str beyond the end) for (i = 0; binc[i] == '\0' && base58str[i] == '1'; ++i) {} // Just finding the end of zeros, nothing to do in loop if (binc[i] == '\0' || base58str[i] == '1') return -3; return binc[0]; } static const char b58digits_ordered[] = "123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz"; bool b58enc(char *b58, size_t *b58sz, const void *data, size_t binsz) { const uint8_t *bin = data; int carry; ssize_t i, j, high, zcount = 0; size_t size; while (zcount < binsz && !bin[zcount]) ++zcount; size = (binsz - zcount) * 138 / 100 + 1; uint8_t buf[size]; memset(buf, 0, size); for (i = zcount, high = size - 1; i < binsz; ++i, high = j) { for (carry = bin[i], j = size - 1; (j > high) || carry; --j) { carry += 256 * buf[j]; buf[j] = carry % 58; carry /= 58; } } for (j = 0; j < size && !buf[j]; ++j); if (*b58sz <= zcount + size - j) { *b58sz = zcount + size - j + 1; return false; } if (zcount) memset(b58, '1', zcount); for (i = zcount; j < size; ++i, ++j) b58[i] = b58digits_ordered[buf[j]]; b58[i] = '\0'; *b58sz = i + 1; return true; } bool b58check_enc(char *b58c, size_t *b58c_sz, uint8_t ver, const void *data, size_t datasz) { uint8_t buf[1 + datasz + 0x20]; uint8_t *hash = &buf[1 + datasz]; buf[0] = ver; memcpy(&buf[1], data, datasz); if (!my_dblsha256(hash, buf, datasz + 1)) { *b58c_sz = 0; return false; } return b58enc(b58c, b58c_sz, buf, 1 + datasz + 4); }