#include #include #include #define IPFS_PATH_C #include // FromCid safely converts a cid.Cid type to a Path type char* ipfs_path_from_cid (struct Cid *c) { const char prefix[] = "/ipfs/"; char *rpath, *cidstr = CidString(c); rpath = malloc(sizeof(prefix) + strlen(cidstr)); if (!rpath) return NULL; strcpy(rpath, prefix); strcat(rpath, cidstr); return rpath; } char** ipfs_path_split_n (char *p, char *delim, int n) { char *c, **r, *rbuf; int i, dlen = strlen(delim); if (n == 0) { return NULL; // no split? } if (n < 0) { // negative, count all delimiters + 1. for (c = p , n = 0 ; c ; n++) { c = strstr(c, delim); if (c) { c += dlen; } } } else { n++; // increment param value. } rbuf = malloc(strlen(p) + 1); if (!rbuf) { return NULL; } r = calloc(sizeof(char*), n + 1); // splits plus NULL pointer termination if (!r) { free(rbuf); return NULL; } strcpy(rbuf, p); // keep original for (c = rbuf, i = 0 ; i < n && c ; i++) { r[i] = c; c = strstr(c, delim); if (c) { *c = '\0'; c += dlen; } } r[i] = NULL; return r; } char** ipfs_path_split_segments (char *p) { if (*p == '/') p++; // Ignore leading slash return ipfs_path_split_n (p, "/", -1); } // Count segments int ipfs_path_segments_length (char **s) { int r = 0; if (s) { while (s[r]) r++; } return r; } // free memory allocated by ipfs_path_split_segments void ipfs_path_free_segments (char ***s) { if (*s && **s) { free(**s); // free string buffer free(*s); // free array *s = NULL; } } // ipfs_path_is_just_a_key returns true if the path is of the form or /ipfs/. int ipfs_path_is_just_a_key (char *p) { char **parts; int ret = 0; parts = ipfs_path_split_segments (p); if (parts) { if (ipfs_path_segments_length (parts) == 2 && strcmp (parts[0], "ipfs") == 0) ret++; ipfs_path_free_segments(&parts); } return ret; } // ipfs_path_pop_last_segment returns a new Path without its final segment, and the final // segment, separately. If there is no more to pop (the path is just a key), // the original path is returned. int ipfs_path_pop_last_segment (char **str, char *p) { if (ipfs_path_is_just_a_key(p)) return 0; *str = strrchr(p, '/'); if (!*str) return ErrBadPath; // error **str = '\0'; *str++; return 0; } char *ipfs_path_from_segments(char *prefix, char **seg) { int retlen, i; char *ret; if (!prefix || !seg) return NULL; retlen = strlen(prefix); for (i = 0 ; seg[i] ; i++) { retlen += strlen(seg[i]) + 1; // count each segment length + /. } ret = malloc(retlen + 1); // allocate final string size + null terminator. if (!ret) return NULL; strcpy(ret, prefix); for (i = 0 ; seg[i] ; i++) { strcat(ret, "/"); strcat(ret, seg[i]); } return ret; } int ipfs_path_parse_from_cid (char *dst, char *txt) { struct Cid *c; char *r; if (!txt || txt[0] == '\0') return ErrNoComponents; c = cidDecode(txt); if (!c) { return ErrCidDecode; } r = ipfs_path_from_cid(c); if (!r) { return ErrCidDecode; } strcpy (dst, r); free (r); return 0; } int ipfs_path_parse (char *dst, char *txt) { int err, i; char *c; const char prefix[] = "/ipfs/"; const int plen = strlen(prefix); if (!txt || txt[0] == '\0') return ErrNoComponents; if (*txt != '/' || strchr (txt+1, '/') == NULL) { if (*txt == '/') { txt++; } err = ipfs_path_parse_from_cid (dst+plen, txt); if (err == 0) { // only change dst if ipfs_path_parse_from_cid returned success. // Use memcpy instead of strcpy to avoid overwriting // result of ipfs_path_parse_from_cid with a null terminator. memcpy (dst, prefix, plen); } return err; } c = txt; for (i = 0 ; (c = strchr(c, '/')) ; i++) c++; if (i < 3) return ErrBadPath; if (strcmp (txt, prefix) == 0) { char buf[strlen(txt+5)]; strcpy (buf, txt+6); // copy to temp buffer. c = strchr(buf, '/'); if (c) *c = '\0'; return ipfs_path_parse_from_cid(dst, buf); } else if (strcmp (txt, "/ipns/") != 0) { return ErrBadPath; } return 0; } int ipfs_path_is_valid (char *p) { char buf[4096]; return ipfs_path_parse(buf, p); }