Clarity edits in Discussion section.
This commit is contained in:
parent
43831e0a05
commit
52eafc5a64
1 changed files with 5 additions and 5 deletions
10
bsip-1203.md
10
bsip-1203.md
|
@ -198,7 +198,7 @@ Utilization of the dual-key address format has numerous interesting use cases, i
|
|||
|
||||
* The ability to maintain **watch-only wallets**. By entrusting only the View Key to a view-only node, it is possible for this node to monitor for activity to an address without granting spending access to the same node. This allows for such things as: opt-in transparency; cash register monitoring; organizational internal auditing, etc.
|
||||
|
||||
* The ability to use **address-per-invoice** without introducing substantial additional scanning overhead. To use this, one keeps the same viewing PubKey and iterates the Spending PubKey part of the address, generating a distinct address per invoice. When scanning the blockchain, the _Child Offset_ is a function of the shared-secret between OTK and ViewKey, such that _AuthKey = SpendKey + Offset_. To obtain the public SpendKey, a watching wallet can subtract the Offset from the AuthKey to obtain the SpendKey, and simply compare against a list of per-invoice SpendKeys that were used to generate addresses. Adding additional SpendKeys to scan for does not incur any additional EC group operations, merely additional byte-wise comparisons, which are trivial. _(Note that while the invoice addresses generated in this manner are distinct, they are not unlinkably distinct, since they share the viewing component. If a business wants individual invoices to be mutually unlinkable, then this scheme will not be sufficient. However, this is a consideration for a business's off-chain security practices, as the addresses themselves never appear on-chain or in a transaction.)_
|
||||
* The ability to use **address-per-invoice** without introducing substantial additional scanning overhead. To use this, one keeps the same viewing PubKey and iterates the Spending PubKey part of the address, generating a distinct address per invoice. When scanning the blockchain, the _Child Offset_ is a function of the shared-secret between OTK and ViewKey, such that _AuthKey = SpendKey + Offset_. To obtain the public SpendKey, a watching wallet can subtract the Offset from the AuthKey to obtain the SpendKey, and simply compare against a list of per-invoice SpendKeys that were used to generate addresses. Adding additional SpendKeys to scan for does not incur any additional EC group operations, merely additional byte-wise comparisons, which are trivial. _(Note that while the invoice addresses generated in this manner are distinct, they are not unlinkably distinct, since they share the viewing component. If a business wants individual invoices to be mutually unlinkable, then this scheme will not be sufficient. However, this is a consideration for a business's off-chain security practices, as the addresses themselves never appear on-chain or in a transaction. An alternate solution which allows even the ViewKey to vary, while still allowing for efficient scanning, is presented in [MRL-0006](https://lab.getmonero.org/pubs/MRL-0006.pdf), however this introduces a change in how the deterministic offsets are generated, which would need to be signaled by a flag in the address format and supported by wallets.)_
|
||||
|
||||
### Possible future extensions
|
||||
|
||||
|
@ -210,7 +210,7 @@ There may be use cases for additional address formats allowing for more complex
|
|||
|
||||
One would be a multi-sig situation in which the address format encodes multiple spending keys and a weighting requirement. Although, this would make the resulting address very lengthy, it would also add an interesting use-case. And, since BitShares authority structures already allow for a vector of authorizing keys and weights, it should be possible to implement the feature on the wallet side, without needing any changes to consensus or API. This idea is not explored further here but merely suggested for future exploration if there is a desire for the feature.
|
||||
|
||||
Another use case for an extended address format would be... (TODO: Discuss including an "invoice nonce" in the address format for correlating incoming transactions to a particular invoice. C.f. Bitcoin where using an address-per-transaction serves both unlinkability as well as invoicing. With Stealth addresses, there is no need to increment addresses for unlinkability, and doing so to facilitate invoicing only increases the scanning overhead by introducing the need to test against additional private keys. But by including an invoice nonce in the address format, which the spending wallet would carry over into the encrypted part of the `stealth_memo`, the recipient can correlate payments to invoices while using only a single address key (or a single pair of spending/viewing keys in the dual-key case).)
|
||||
Another use case for an extended address format would be... (TODO: Discuss including an "invoice nonce" in the address format for correlating incoming transactions to a particular invoice. C.f. Bitcoin where using an address-per-transaction serves both unlinkability as well as invoicing. With Stealth addresses, there is no need to increment addresses for unlinkability, and doing so to facilitate invoicing only increases the scanning overhead by introducing the need to test against additional private keys. But by including an invoice nonce in the address format, which the spending wallet would carry over into the encrypted part of the `stealth_memo`, the recipient can correlate payments to invoices while using only a single address key. This strategy would be similar to the "Integrated addresses" that can be used on the Monero platform. Note, however, that this scheme is largely obsoleted by the simple ability to iterate the SpendKey through a HD address family while keeping the same ViewKey in a dual-key address format.)
|
||||
|
||||
### Pitfalls and Cautions
|
||||
|
||||
|
@ -222,11 +222,11 @@ TODO: analyze
|
|||
|
||||
#### An attack on address key from leak of a transaction private key
|
||||
|
||||
A confidential output will have associated with it an "Output PubKey." He who can provide a signature from that PubKey is authorized to spend the commitment. Automated detection of inbound commitments depends on the deterministic computation of an offset between the One-time PubKey and the Address PubKey, which is computed from the shared secret between the sender and receiver. Because only the offset is deterministic, the sender cannot compute the private key to the Output PubKey. Only the receiver can do this (by knowing both the offset and the Address private key).
|
||||
A confidential output will have associated with it an "Output PubKey," or AuthKey. He who can provide a signature from the AuthKey is authorized to spend the commitment. Automated detection of inbound commitments depends on the deterministic computation of an offset between the One-time PubKey (OTK) and the Address SpendKey, which is computed from the shared secret between the sender and receiver. Because only the offset is deterministic, the sender cannot compute the private key to the AuthKey. Only the receiver can do this (by knowing both the offset and the address's private spending key).
|
||||
|
||||
Because Output PubKeys are only used once, wallet software designers may be led to believe that the security of the Output PrivKeys are only important up until the commitment is spent. (What would it matter, to leak that private key, when the commitment it authorizes is no longer spendable?) This would be a mistake, however, because anyone who can compute the additive offset can subtract it from the Output PrivKey to reveal the Address PrivKey. Although the general public is not expected to be privy to that offset, the _sender_ of the output is in posession of the offset (and the ability to compute it due to knowing the random _k_ behind the One-time PubKey). This means the sender can compute the Address PrivKey, in the event that the recipient leaks the Output PrivKey.
|
||||
Because AuthKeys are only used once, wallet software designers may be led to believe that the security of the AuthKey private keys are only important up until the commitment is spent. (What would it matter, to leak that private key, when the commitment it authorizes is no longer spendable?) This would be a mistake, however, because anyone who can compute the additive offset can subtract it from the private AuthKey to reveal the address's private spending key. Although the general public is not expected to be privy to that offset, the _sender_ of the output is in possession of the offset (and the ability to compute it due to knowing the random _k_ behind the One-time PubKey). This means the sender would be enabled to compute the address's private key, in the event that the recipient leaks the private AuthKey.
|
||||
|
||||
Thus, wallet designers should be advised to treat the Output PrivKeys handled by their wallets with at least as much care as the Address PrivKeys, even long after the commitments they authorize have been spent. A leak of a single commitment's PrivKey is tantamount to a leak of the PrivKey for the entire wallet.
|
||||
Thus, wallet designers should be advised to treat the private TXO AuthKeys handled by their wallets with at least as much care as the address private keys, even long after the commitments they authorize have been spent. A leak of a single commitment's PrivKey is tantamount to a leak of the PrivKey for the entire wallet.
|
||||
|
||||
(A similar risk of revealing a parent PrivKey from leak of a child PrivKey and parent XPUB when using non-hardened derivation is noted in the Bitcoin BIP-32 protocol for Hierarchical Deterministic Wallets.)
|
||||
|
||||
|
|
Loading…
Reference in a new issue